jueves, 2 de enero de 2014

¿Es Dios un Matemático? Mario Livio 2009 Capitulo VII Lógicos: pensar sobre el razonamiento (II).

 Las leyes del pensamiento

George Boole (figura 47) nació el 2 de noviembre de 1815 en la ciudad industrial de Lincoln, Inglaterra.[203] Su padre, John Boole, zapatero en Lincoln, mostraba un gran interés por la matemática, y era un hábil artesano constructor de instrumentos ópticos. La madre de Boole, Mary Ann Joyce, era doncella de una dama de la sociedad. Con la atención del padre distraída de su oficio, el estado económico de la familia no era muy boyante. George asistió a una escuela infantil hasta los siete años de edad y, a continuación, a una escuela primaria, en donde tuvo como maestro a un tal John Walter Reeves. De niño, Boole estaba especialmente interesado por el latín, que un librero le enseñó, y por el griego, que aprendió por sí mismo.
A los catorce años de edad se las arregló para traducir un poema del poeta griego del siglo I a.C. Meleagro. El padre de George, lleno de orgullo, publicó la traducción en el Herald de Lincoln, lo que hizo que un maestro local publicase un artículo expresando su incredulidad. La pobreza obligó a George Boole a empezar a trabajar de profesor ayudante a la edad de dieciséis años. Durante los años posteriores, Boole dedicó su tiempo libre al estudio del francés, el italiano y el alemán. El conocimiento de estos idiomas modernos le fue muy útil, ya que le permitió dedicar su atención a las grandes obras de matemáticos como Lacroix, Laplace, Lagrange, Jacobi y otros. Sin embargo, Boole seguía sin poder recibir una formación matemática regular, de modo que continuó sus estudios en solitario mientras trabajaba de maestro para contribuir al sostén de sus padres y hermanos. Pero el talento matemático de este autodidacta empezaba a manifestarse, y empezó a publicar en el Cambridge Mathematical Journal.
En 1842, Boole inició una correspondencia regular con De Morgan, a quien le enviaba sus artículos matemáticos para que éste los comentase. Su creciente reputación como matemático original y el apoyo de una recomendación de De Morgan hicieron que Boole recibiese la oferta de ocupar el puesto de profesor de matemática en el Queen's College, en Cork, Irlanda, en 1849, en donde enseñó durante el resto de su vida. En 1855, Boole se casó con Mary Everest (cuyo tío, el explorador George Everest, dio nombre a la montaña), diecisiete años más joven que él, y la pareja tuvo cinco hijas. Boole murió prematuramente a los cuarenta y nueve años de edad. Un frío día de invierno de 1854, Boole llegó empapado al colegio, pero insistió en dar sus clases con la ropa mojada. Al llegar a su casa, su mujer contribuyó a empeorar su estado al mojar la cama con cubos de agua, siguiendo una superstición según la cual la cura debe, en cierto modo, replicar la causa de la enfermedad. Boole contrajo una neumonía y murió el 8 de diciembre de 1864. Bertrand Russell no ocultaba su admiración por esta persona de formación autodidacta: «La matemática pura fue descubierta por Boole, en su obra titulada Las leyes del pensamiento (1854) […] En realidad, su libro trataba de lógica formal, que es lo mismo que decir matemática». Sorprendentemente, tanto Mary Boole (1832-1916) como las cinco hijas del matrimonio alcanzaron una fama considerable en distintos campos, desde la educación a la química.
Boole publicó El análisis matemático de la lógica[204] en 1847 y Las leyes del pensamiento en 1854 (el título completo era Una investigación de las leyes del pensamiento en las que se basan las teorías matemáticas de la lógica y las probabilidades). Se trataba de verdaderas obras maestras, el primer paso decisivo para poner de manifiesto el paralelismo entre las operaciones aritméticas y las lógicas. Literalmente, Boole transformó la lógica en un tipo de álgebra (a la que se llamaría álgebra de Boole) y extendió el análisis de la lógica incluso al razonamiento probabilístico. En palabras del propio Boole:
El propósito de este tratado [Las leyes del pensamiento] es investigar las leyes fundamentales de las operaciones de la mente mediante las que se lleva a cabo el razonamiento, expresarlas en el lenguaje simbólico del Cálculo y, sobre estos cimientos, establecer la ciencia de la Lógica y construir su método; hacer de este método la base de un método general para la aplicación de la doctrina matemática de las Probabilidades y, finalmente, cosechar de los diversos elementos de verdad que estas investigaciones saquen a la luz algunos indicios probables acerca de la naturaleza y la constitución de la mente humana.[205]

El cálculo de Boole se podía interpretar como aplicado a las relaciones entre clases (conjuntos de objetos o miembros) o dentro de la lógica de proposiciones.
Por ejemplo, si x e y fuesen clases, una relación como x = y significaría que dos clases tienen exactamente los mismos miembros, aunque las definiciones de ambas fuesen distintas. Tomemos el caso de un colegio en el que todos los niños miden menos de dos metros; entonces, las dos clases definidas como: x = «todos los niños del colegio» e y = «todos los niños del colegio que miden menos de dos metros» son iguales. Si x e y representasen proposiciones, entonces x = y significaría que ambas proposiciones son equivalentes (que una es verdadera si, y sólo si, la otra también lo es). Por ejemplo, las proposiciones: x = «John Barrymore era hermano de Ethel Barrymore» e y = «Ethel Barrymore era hermana de John Barrymore» son iguales. El símbolo «x • y» representaba la parte común de las dos clases x e y (los miembros que pertenecen tanto a x como a y) o la conjunción de las proposiciones x e y (esto es, «x e y»). Por ejemplo, si x fuese la clase de todos los tontos del pueblo e y fuese la clase de todas las cosas con pelo negro, entonces x • y sería la clase de todos los tontos del pueblo con el pelo negro. Para las proposiciones x e y, la conjunción x • y (se puede también utilizar la palabra «y») significa que ambas proposiciones deben ser ciertas. Por ejemplo, cuando la Dirección General de Tráfico dice que «debes pasar una prueba de visión periférica y un examen de conducción», significa que ambos requisitos deben cumplirse. Para Boole, el símbolo «x + y» representaba (para dos clases sin miembros comunes) la clase que constaba de los miembros de x y de los miembros de y.
En el caso de proposiciones, «x + y» correspondía a «o x o y, pero no ambas». Por ejemplo, si x es la proposición «las clavijas son cuadradas» e y es «las clavijas son redondas», entonces x + y es «las clavijas son o cuadradas o redondas». De forma similar, «x − y» representaba la clase de los miembros de x que no eran miembros de y, o la proposición «x pero no y». Boole denotaba la clase universal (que contenía todos los miembros posibles de los que se estaba hablando) como 1, y la clase vacía o nula (que no contenía ningún miembro) como 0. Obsérvese que la clase nula (o conjunto nulo) no es en absoluto lo mismo que el número cero; este último es simplemente el número de miembros de la clase nula. Obsérvese también que la clase nula no es lo mismo que nada, porque una clase que no contiene nada sigue siendo una clase. Por ejemplo, si todos los periódicos de Albania están escritos en albanés, la clase de todos los periódicos de Albania escritos en albanés se denotaría con 1 en la notación de Boole, mientras que la clase de todos los periódicos de Albania escritos en español se denotaría con 0. En el caso de proposiciones, 1 representa la proposición verdadera estándar (por ejemplo, los humanos son mortales) y 0, la proposición falsa estándar (por ejemplo, los humanos son inmortales), respectivamente.
Utilizando estas convenciones, Boole formuló un conjunto de «axiomas» que definían el álgebra de la lógica. Por ejemplo, se puede comprobar que, utilizando las definiciones anteriores, la proposición obviamente cierta «todo es o x o no x» se podría escribir así en el álgebra de Boole: x + (1 − x) = 1, que es también cierto en el álgebra ordinaria. De forma similar, la afirmación de que la parte común entre cualquier clase y la clase vacía es la clase vacía se representaba mediante 0 • x = 0, que significaba también que la conjunción de cualquier proposición con una falsa es falsa. Por ejemplo, la proposición «el azúcar es dulce y los humanos son inmortales» genera una proposición falsa, a pesar de que la primera parte es verdadera. Obsérvese de nuevo que esta «igualdad» en el álgebra de Boole sigue siendo cierta con números algebraicos normales.
Para demostrar la potencia de sus métodos, Boole intentó utilizar sus símbolos lógicos en cualquier asunto que considerase importante. Sin ir más lejos, analizó incluso los argumentos de los filósofos Samuel Clarke y Baruch Spinoza sobre la existencia y atributos de Dios. Sin embargo, su conclusión fue bastante pesimista: «Opino que no es posible examinar los argumentos de Clarke y Spinoza sin llegar a la profunda convicción de la futilidad de todo empeño de establecer, completamente a priori, la existencia de un Ser Infinito, Sus atributos y Su relación con el Universo». A pesar de la sensatez de la conclusión de Boole,[206] al parecer no todas las personas quedaron convencidas de la futilidad de estos empeños, pues a día de hoy aún siguen emergiendo versiones actualizadas de los argumentos ontológicos para la existencia de Dios.
Boole fue capaz de domar matemáticamente los conectores lógicos y, o, si… entonces y no, que actualmente se encuentran en el corazón de las operaciones que realizan los ordenadores y diversos circuitos de conmutación. Por tanto, muchos le consideran uno de los «profetas» que dieron paso a la era digital. Sin embargo, debido a su naturaleza pionera, el álgebra de Boole tenía sus limitaciones. En primer lugar, los escritos de Boole son algo ambiguos y de difícil comprensión debido a que la notación utilizada se parecía demasiado a la del álgebra ordinaria. En segundo lugar, Boole confundió la distinción entre proposiciones (por ejemplo, Aristóteles es mortal), funciones proposicionales o predicados (por ejemplo, x es mortal) y afirmaciones cuantificadas (por ejemplo, para todo x, x es mortal). Finalmente, Frege y Russell afirmaron más adelante que el álgebra deriva de la lógica, de modo que se podría decir que tenía más sentido construir el álgebra sobre la base de la lógica que el proceso contrario.
Sin embargo, otro de los aspectos del trabajo de Boole estaba a punto de dar abundante fruto. Se trataba de la comprensión de la proximidad entre la lógica y los conceptos de clases y conjuntos. Recordemos que el álgebra de Boole funcionaba tanto para clases como para proposiciones lógicas. En efecto, si todos los miembros de un conjunto X son también miembros de Y (X es un subconjunto de Y), esto se puede expresar con una implicación lógica de la forma «Si X entonces Y». Por ejemplo, el hecho de que el conjunto de todos los caballos sea un subconjunto del conjunto de todos los cuadrúpedos se puede reescribir en forma de proposición lógica: «Si x es un caballo entonces es un cuadrúpedo».
El álgebra lógica de Boole fue ampliada y mejorada posteriormente por diversos investigadores, pero la persona que sacó el máximo provecho de la similitud entre los conjuntos y la lógica y elevó el concepto a otro nivel fue Gottlob Frege (1848-1925; figura 48).

Friedrich Ludwig Gottlob Frege nació en Wismar, Alemania, en donde su padre y su madre dirigieron, en distintos momentos, una escuela secundaria femenina. Frege estudió matemáticas, física, química y filosofía, primero en la Universidad de Jena y luego, durante dos años más, en la Universidad de Göttingen.
Tras completar su formación empezó a dar clases en Jena en 1874, en donde estuvo enseñando matemáticas durante toda su carrera profesional. Aunque su trabajo de profesor le dejaba poco tiempo libre, Frege se las arregló para publicar su primera obra revolucionaria sobre lógica en 1879.[207] Se titulaba Escritura conceptual: un lenguaje formal para el pensamiento puro modelado según el de la aritmética (se suele conocer como el Begriffsschrift). En esta obra, Frege desarrollaba un original lenguaje lógico que posteriormente ampliaría en los dos volúmenes de su tratado Grundgesetze der Arithmetic (Leyes básicas de la aritmética).[208] Lo que Frege tenía planeado en el campo de la lógica era, por un lado, muy específico, pero además extraordinariamente ambicioso. Aunque prestaba atención principalmente a la aritmética, su intención era demostrar que incluso conceptos tan habituales como los números naturales (1, 2, 3…) se podían reducir a construcciones lógicas. Así, Frege creía que todas las verdades de la aritmética podían demostrarse a partir de unos pocos axiomas de la lógica. En otras palabras, según Frege, incluso las proposiciones como 1 + 1 = 2 no eran verdades empíricas, basadas en la observación, sino que podían derivarse de un conjunto de axiomas lógicos. La influencia del Begriffsschrift de Frege ha sido tan notable que el lógico contemporáneo Willard von Orman Quine (1908-2000) escribió: «La lógica es una disciplina antigua y, desde 1879, una disciplina magnífica».
Una idea esencial en la filosofía de Frege era la aseveración de que la verdad es independiente del juicio humano. En sus Leyes básicas de la aritmética escribe: «Ser verdadero es distinto de ser tomado por verdadero, ya sea por una persona, muchas o todas, y en ningún caso puede reducirse a ello. No existe contradicción en el hecho de que algo sea verdadero y que todos opinen que es falso. Según yo lo entiendo, las leyes de la lógica no son leyes acerca de creer que algo es verdad, sino leyes de la verdad … Estas [leyes] actúan como fronteras establecidas sobre cimientos eternos que nuestro pensamiento puede sobrepasar, pero en ningún caso desplazar».
Los axiomas lógicos de Frege[209] suelen ser de la forma «para todo… si… entonces». Por ejemplo, uno de sus axiomas dice «para todo p, si no (no p) entonces p», lo que básicamente establece que, si una proposición contradictoria con la que se está discutiendo es falsa, entonces esta última es cierta. Por ejemplo, si no es cierto que no tienes que detener tu coche en una señal de stop, entonces con total seguridad debes detenerte en una señal de stop. Para desarrollar un «lenguaje» lógico, Frege complementó su conjunto de axiomas con un nuevo e importante aspecto. Sustituyó el estilo tradicional de sujeto/predicado de la lógica clásica por conceptos prestados de la teoría matemática de funciones. Lo explicaré brevemente: en matemática, expresiones como: f(x) = 3x + 1 significan que f es una función del argumento x, y que el valor de la función se puede obtener multiplicando el argumento por tres y sumando uno. Frege definió lo que el denominaba conceptos como funciones. Por ejemplo, supongamos que queremos comentar el concepto «comer carne». Este concepto se podría denotar simbólicamente mediante una función «F(x)», y el valor de esta función sería Verdadero si x = León y Falso si x = Ciervo. De forma similar, en el caso de los números, el concepto (función) «ser menor que 7» asociaría a Falso todos los números mayores o iguales que 7 y a Verdadero todos los menores que 7. Frege se refería a los objetos para los que un cierto concepto daba el valor Verdadero como objetos que «cumplían» ese concepto.
Como ya he mencionado, Frege estaba convencido de que todas las proposiciones relativas a los números naturales eran cognocibles y derivables únicamente a partir de definiciones y leyes lógicas. En consecuencia, inició su exposición acerca de los números naturales sin exigir ninguna comprensión previa del concepto de «número». Por ejemplo, en el lenguaje lógico de Frege, dos conceptos son equinuméricos (en palabras llanas, tienen asociado el mismo número) si hay una correspondencia uno a uno entre los objetos que «cumplen» un concepto y los que cumplen el otro. Es decir, las tapas de cubos de basura son equinuméricas con los propios cubos de basura (si todos ellos tienen tapa), y esta definición no requiere de la definición de «número». Frege introdujo entonces una ingeniosa definición lógica del número cero. Imaginemos un concepto F definido como «no idéntico a sí mismo». Puesto que todos los objetos deben ser idénticos a sí mismos, ningún objeto cumple F. En otras palabras, para todos los objetos x, F(x) = Falso. Frege definió el número común cero como el «número del concepto F», y a continuación definió todos los números naturales en términos de unas entidades a las que denominó extensiones.[210] La extensión de un concepto era la clase de todos los objetos que cumplían ese concepto. Aunque esta definición puede ser algo difícil de comprender para alguien que no sea lógico, en realidad es bastante simple. Por ejemplo, la extensión del concepto «mujer» era la clase de todas las mujeres. Es necesario remarcar que la extensión de «mujer» no es una mujer.
Quizá se pregunte cómo puede esta definición lógica abstracta ayudar a definir algo como, digamos, el número 4. Según Frege, el número 4 era la extensión (o clase) de todos los conceptos que cumplen cuatro objetos. Así, el concepto «ser una pierna de un perro determinado de nombre Snoopy» pertenece a esa clase (y, por consiguiente, al número 4), igual que el concepto «ser abuelo o abuela de Gottlob Frege».
El proyecto de Frege era realmente impresionante, pero sufría de algunos graves inconvenientes. Por un lado, la idea de emplear conceptos (los bloques básicos de construcción del pensamiento) para crear la aritmética era una genialidad. Por otro, Frege omitió algunas incoherencias esenciales en su formalismo. Uno de sus axiomas en particular (el conocido como «Ley básica V») conducía a una contradicción, por lo que fallaba por su base.
El texto de la ley tenía aspecto inocente: afirmaba que la extensión de un concepto F es idéntica a la extensión del concepto G si, y sólo si, los mismos objetos cumplen F y G. Pero el 16 de junio de 1902, Bertrand Russell (figura 49) dejó caer la bomba en una carta a Frege en la que señalaba una cierta paradoja que demostraba la incoherencia de la Ley básica V. Por una broma del destino, la carta de Russell llegó justo cuando el segundo volumen de las Leyes básicas de la aritmética de Frege iba camino de la imprenta. Frege, horrorizado, se apresuró a agregar al manuscrito la siguiente sincera admisión: «Apenas hay algo más desagradable para un científico que notar cómo los cimientos de su trabajo se resquebrajan justo después de concluirlo. Una carta de Mr. Bertrand Russell me ha colocado en esa posición cuando este trabajo ya estaba casi impreso». Frege dedicó estas elegantes palabras a Russell: «Su descubrimiento de la contradicción me provocó una inmensa sorpresa y casi diría consternación, ya que hizo temblar la base sobre la que pretendía construir la aritmética».

El hecho de que una paradoja pudiese tener este devastador efecto sobre todo un proyecto puede resultar sorprendente a primera vista, pero, en palabras del lógico de la Universidad de Harvard W. V. O. Quine: «En más de una ocasión en la historia el descubrimiento de una paradoja ha forzado una reconstrucción esencial de las bases del pensamiento». La paradoja de Russell representó precisamente una de tales ocasiones.

 La paradoja de Russell

 

 

Una clase o conjunto no es más que una colección de objetos. Estos objetos no tienen por qué estar relacionados entre sí. Se puede hablar de una clase que contenga todos los elementos siguientes: los periódicos de Albania, el caballo blanco de Napoleón y el concepto de amor verdadero. Los elementos que pertenecen a una cierta clase se denominan miembros de esa clase. El matemático alemán Georg Cantor (1845-1918) fue el fundador, prácticamente en solitario, de la teoría de conjuntos. Los conjuntos —o clases— se revelaron enseguida como objetos fundamentales, y tan irrevocablemente ligados a la lógica que cualquier intento para construir la matemática sobre la lógica implicaba de forma necesaria construir sobre las bases axiomáticas de la teoría de conjuntos.
La mayoría de las clases de objetos con las que uno se tropieza no son miembros de sí mismas. Por ejemplo, la clase de todos los copos de nieve no es un copo de nieve, la clase de todos los relojes de pulsera antiguos no es un reloj de pulsera antiguo, etc. Pero algunas clases sí son miembros de sí mismas. Por ejemplo, la clase de «todo aquello que no es un reloj de pulsera antiguo» es miembro de sí misma, ya que está claro que esta clase no es un reloj antiguo. De forma similar, la clase de todas las clases es miembro de sí misma, ya que, obviamente, es una clase. Pero ¿y la clase de «todas las clases que no son miembros de sí mismas»?[211] Vamos a llamar R a esa clase. ¿Es R miembro de sí misma (de R) o no lo es? Está claro que R no pertenece a R porque, si perteneciese, violaría la definición de pertenencia a R. Pero, si R no pertenece a sí misma, entonces, según la definición, debe ser miembro de R. De forma parecida a lo que sucedía con el barbero del pueblo, aquí tenemos una clase R que pertenece y no pertenece a R, lo que es una contradicción lógica. Esta es la paradoja que Russell envió a Frege. Esta antinomia minaba por completo el proceso de determinación de las clases o conjuntos, y asestó un golpe mortal al proyecto de Frege. Frege hizo algunos intentos desesperados de reparar su sistema de axiomas, pero fueron infructuosos. La conclusión tenía todo el aspecto de ser desastrosa: en lugar de ser más sólida que la matemática, la lógica era, al parecer, más vulnerable a las incoherencias paralizantes.
En el mismo período en que Frege desarrollaba su proyecto de lógica, el matemático y lógico italiano Giuseppe Peano probaba una estrategia ciertamente distinta. La intención de Peano era construir la aritmética sobre una base axiomática. En consecuencia, su punto de partida era la formulación de un conjunto de axiomas simple y conciso. Los tres primeros axiomas, por ejemplo, decían:
0 es un número.
El sucesor de cualquier número también es un número.
Dos números no pueden tener el mismo sucesor.
El problema es que, mientras que el sistema axiomático de Peano podía reproducir las leyes conocidas de la aritmética (después de introducir algunas definiciones adicionales), no contenía nada que permitiese identificar de forma única los números naturales.
El paso siguiente lo dio Bertrand Russell. Russell sostenía que la idea original de Frege (derivar la aritmética de la lógica) seguía siendo el camino correcto. Y, en respuesta a esta audaz toma de postura, Russell produjo, en colaboración con Alfred North Whitehead (figura 50), una increíble obra maestra de la lógica: el tratado en tres volúmenes Principia Mathematica, un hito histórico.[212] Con la posible excepción del Organon de Aristóteles, se trata probablemente de la obra más influyente de la historia de la lógica (en la figura 51 se muestra la portada de la primera edición).
En los Principia, Russell y Whitehead defendían la postura de que la matemática era, básicamente, una elaboración de las leyes de la lógica, y que no existía una clara frontera entre ambas.[213] Sin embargo, para llegar a una descripción consistente consigo misma, aún debían controlar las antinomias o paradojas (además de la paradoja de Russell se habían descubierto otras). Para ello era necesario realizar algunos malabarismos lógicos de envergadura. Russell argumentaba que el origen de estas paradojas se reducía a un «círculo vicioso» en el que se definían entidades en términos de una clase de objetos que contenía la entidad definida. En palabras de Russell: «Si digo “Napoleón poseía las cualidades que definen a un gran general”, deberé definir “cualidades” de modo que no incluya lo que estoy diciendo; es decir, “tener las cualidades que definen a un gran general” no debe ser una cualidad en el sentido que suponemos».
Con el fin de evitar la paradoja, Russell propuso una teoría de tipos en la que una clase (o conjunto) pertenece a un tipo lógico superior que aquel al que pertenecen sus miembros.[214] Por ejemplo, todos los jugadores individuales del equipo de fútbol Dallas Cowboys serían del tipo 0. El propio equipo Dallas Cowboys, que es una clase de jugadores, sería del tipo 1. La National Football League, que es una clase de equipos, sería del tipo 2; una colección de ligas (si existiese) sería del tipo 3, etc. En este esquema, la simple noción de «una clase que es miembro de sí misma» no es verdadera ni falsa, sino que simplemente no tiene sentido. En consecuencia, las paradojas del tipo de la de Russell no se dan jamás.
No cabe duda de que los Principia significan una proeza colosal en el campo de la lógica, pero no se les puede considerar los cimientos de la matemática buscados durante tanto tiempo. Para muchos, la teoría de tipos de Russell es una solución bastante artificiosa del problema de las paradojas que, además, genera ramificaciones de una inquietante complejidad.[215] Por ejemplo, los números racionales (es decir, las fracciones simples) resultan ser de un tipo superior que los números naturales. Para evitar en parte estas complicaciones, Russell y Whitehead introdujeron un axioma adicional, denominado axioma de reducibilidad, que por sí mismo generó una cierta controversia y desconfianza.
Los matemáticos Ernst Zermelo y Abraham Fraenkel sugirieron posteriormente métodos más elegantes para librarse de las paradojas. De hecho, consiguieron axiomatizar de forma consistente la teoría de conjuntos y reproducir la mayor parte de los resultados de la teoría. Esto parecía satisfacer, al menos parcialmente, el sueño de los platónicos. Si la teoría de conjuntos y la lógica eran, en realidad, dos caras de una misma moneda, una base sólida para la teoría de conjuntos implicaba una base sólida para la lógica. Además, si era cierto que la mayoría de la matemática surgía de la lógica, esto concedía a la matemática una especie de certidumbre objetiva. Por desgracia, los platónicos tuvieron que suspender pronto sus celebraciones, porque estaban a punto de sufrir un grave caso de déjà vu.

 ¿Otra vez la crisis no euclidiana?

 

 

En 1908, el matemático alemán Ernst Zermelo[216] (1871-1953) siguió un camino similar al que Euclides había abierto alrededor del año 300 a.C. Euclides formuló algunos postulados no demostrados pero, supuestamente, evidentes por sí mismos, acerca de puntos y líneas, y construyó la geometría basándose en esos axiomas. Zermelo, que había descubierto la paradoja de Russell por su cuenta nada menos que en 1900, propuso una forma de construir la teoría de conjuntos sobre una base axiomática similar. Su teoría sorteaba la paradoja de Russell mediante una cuidadosa elección de principios de construcción que evitaban ideas contradictorias como «el conjunto de todos los conjuntos». El esquema de Zermelo fue posteriormente ampliado por el matemático israelí Abraham Fraenkel[217] (1891-1965) para constituir lo que ahora se denomina la teoría de conjuntos de Zermelo-Fraenkel (John von Neumann agregó algunos otros cambios importantes en 1925).
Todo habría sido casi perfecto (aún tenía que demostrarse la consistencia) si no hubiese sido por algunas molestas sospechas. Había un axioma (el axioma de elección) que, igual que el famoso «quinto» de Euclides estaba causando a los matemáticos un verdadero dolor de cabeza. En palabras simples, el axioma de elección dice: «Si X es una colección de conjuntos no vacíos, podemos elegir un miembro de cada uno de los conjuntos de X para formar un nuevo conjunto, Y».[218] Esta afirmación es obviamente cierta si la colección X no es infinita. Si tenemos 100 cajas y cada una de ellas contiene al menos una canica, podemos elegir sin problemas una canica de cada caja para formar un conjunto Y que contenga 100 canicas. En un caso como éste no necesitamos ningún axioma especial: podemos demostrar que esta elección es posible. La afirmación es cierta incluso para colecciones X infinitas, siempre que podamos especificar con precisión cómo efectuamos la elección. Imaginemos, por ejemplo, una colección infinita de conjuntos no vacíos de números naturales. Los miembros de esta colección pueden ser conjuntos como {2, 6, 7}, {1, 0}, (346, 5, 11, 1.257}, {todos los números naturales entre 381 y 10.457}, etc. Sin embargo, la cuestión es que en todo conjunto de números naturales siempre hay un miembro que es el menor. Nuestra elección podría, pues, describirse de forma única así: «De cada conjunto elegimos el elemento menor». En tal caso podemos de nuevo evitar la necesidad del axioma de elección. El problema se plantea, en colecciones infinitas, en los casos en los que no podemos realmente caracterizar la elección. En tales circunstancias, el proceso de elección simplemente no se acaba nunca, y la existencia de un conjunto que consta exactamente de un elemento de cada uno de los miembros de la colección X se convierte en una cuestión de fe.
Desde su creación, el axioma de elección ha generado una notable controversia entre los matemáticos. El hecho de que el axioma asevere la existencia de determinado objeto matemático (esto es, la elección) sin ofrecer ningún ejemplo tangible de ese objeto ha atraído críticas feroces, especialmente de los adeptos a la escuela de pensamiento denominada constructivismo (relacionada filosóficamente con el intuicionismo). Los constructivistas sostenían que cualquier cosa que existe debe ser explícitamente consumible. Otros matemáticos tendían también a evitar el axioma de elección y utilizar sólo el resto de los axiomas de la teoría de Zermelo-Fraenkel.
Debido a los aparentes problemas del axioma de elección, los matemáticos empezaron a preguntarse si éste se podría demostrar o refutar utilizando los demás axiomas. La historia del quinto axioma de Euclides se estaba, literalmente, repitiendo. A finales de los años treinta se ofreció una solución parcial. Kurt Gödel (1906-1978), uno de los lógicos más influyentes de la historia, demostró que el axioma de elección y otra famosa conjetura formulada por Cantor, denominada hipótesis del continuo,[219] eran consistentes con los demás axiomas de Zermelo-Fraenkel. Es decir, ninguna de las dos hipótesis podía refutarse mediante los otros axiomas estándar de la teoría de conjuntos. El matemático americano Paul Cohen[220] (1934-2007) —que por desgracia falleció mientras yo escribía este libro— presentó pruebas adicionales en 1963 que establecían la completa independencia del axioma de elección y de la hipótesis del continuo. En otras palabras, el axioma de elección no podía ser demostrado ni refutado a partir del resto de los axiomas de la teoría de conjuntos. De forma similar, la hipótesis del continuo no podía ser demostrada ni refutada a partir del mismo grupo de axiomas, aunque se incluyese el axioma de elección.
Este resultado tuvo espectaculares consecuencias en filosofía. Como en el caso de las geometrías no euclidianas, en el siglo XIX no había una única teoría de conjuntos definitiva ¡sino cuatro, al menos! Se podían plantear hipótesis distintas sobre los conjuntos infinitos y acabar con teorías de conjuntos mutuamente excluyentes. Por ejemplo, se podía suponer que el axioma de elección y la hipótesis del continuo se cumplían —y se obtenía una versión— o bien suponer que ninguno de los dos se cumplía —y se llegaba a una teoría totalmente diferente—. También se llegaba a dos teorías de conjuntos distintas si se asumía la validez de uno de los axiomas y se negaba la del otro.
De nuevo hacía su aparición una crisis como la de las geometrías no euclidianas, pero aún peor. Debido al papel fundamental de la teoría de conjuntos como posible base para la totalidad de la matemática, el problema para los platónicos era mucho más grave. Si, en efecto, se podían formular varias teorías de conjuntos con sólo elegir una colección de axiomas diferente, ¿no daba eso fuerza a la tesis de que la matemática no era más que una invención humana? La victoria de los formalistas parecía prácticamente segura.

 Una verdad incompleta


Mientras que a Frege le preocupaba sobre todo el significado de los axiomas, al principal promotor del formalismo, el gran matemático alemán David Hilbert (1862-1943; figura 52) propugnaba evitar por completo cualquier interpretación de las fórmulas matemáticas.
Hilbert no tenía interés alguno en cuestiones como si la matemática podía derivarse de las nociones de la lógica. Para él, la matemática consistía en realidad en un conjunto de fórmulas sin sentido, modelos estructurados compuestos de símbolos arbitrarios.[221] Hilbert asignó la tarea de garantizar la solidez de los cimientos de la matemática a una nueva disciplina a la que denominó «metamatemática». Esto es, la metamatemática trataba del uso de los propios métodos del análisis matemático para demostrar la consistencia de todo el proceso formal de derivación de teoremas a partir de axiomas mediante estrictas reglas de inferencia. Dicho de otro modo, Hilbert opinaba que podía demostrar matemáticamente que la matemática funcionaba. Según sus propias palabras:
La meta de mis investigaciones sobre los nuevos fundamentos de la matemática es la siguiente: eliminar de una vez por todas la duda general acerca de la fiabilidad de la inferencia matemática … Todo aquello que constituía la matemática será formalizado con el máximo rigor de modo que la matemática propiamente dicha o en sentido estricto se convierta en un conjunto de fórmulas … Aparte de la formalización de la matemática propiamente dicha, existe una matemática que es, hasta cierto punto, nueva: una metamatemática necesaria para salvaguardar la matemática y en la cual (a diferencia de los modos puramente formales de inferencia en la matemática propiamente dicha) se aplica la inferencia contextual, pero únicamente para demostrar la consistencia de los axiomas … Así, el desarrollo de la ciencia matemática en su conjunto tiene lugar de dos formas que se alternan constantemente: por un lado, derivamos fórmulas demostrables a partir de los axiomas mediante inferencia formal; por otro, incorporamos nuevos axiomas y demostramos su consistencia por inferencia contextual.[222]
El plan de Hilbert sacrificaba el significado para aumentar la seguridad de los fundamentos. En consecuencia, para sus seguidores formalistas, la matemática no era más que un juego, pero su finalidad era demostrar rigurosamente que se trataba de un juego totalmente consistente.[223] Con todos los avances en axiomatización, la realidad del sueño formalista de la «teoría de la demostración» parecía estar al alcance de la mano.
Sin embargo, no todos tenían fe en que el camino tomado por Hilbert fuese el correcto. Ludwig Wittgenstein (1889-1951), considerado por algunos como el filósofo más notable del siglo XX,[224] creía que los esfuerzos de Hilbert y su metamatemática eran, en cierto sentido, una pérdida de tiempo. «No podemos establecer una norma para la aplicación de otra norma», alegaba. En otras palabras, Wittgenstein no creía que la comprensión de un «juego» pudiese depender de la construcción de otro: «Si estoy confuso acerca de la naturaleza de la matemática, ninguna demostración puede ayudarme».[225] No obstante, nadie se esperaba el mazazo que estaba a punto de caer. De un solo golpe, Gödel, que por entonces contaba sólo veinticuatro años, atravesó con una estaca el corazón del formalismo. Kurt Gödel (figura 53) nació el 28 de abril de 1906 en la ciudad de Moravia que más tarde se conocería con el nombre checo de Brno.[226]
En aquel tiempo la ciudad formaba parte del Imperio Austrohúngaro, y Gödel creció en una familia de habla alemana. Su padre, Rudolf Gödel, dirigía una fábrica textil, y su madre, Marianne Gödel, cuidaba de que el joven Kurt recibiese una amplia educación en matemática, historia, idiomas y religión. Durante su adolescencia, Gödel desarrolló interés por la matemática y la filosofía y a los dieciocho años ingresó en la Universidad de Viena, en donde centró principalmente su atención en la lógica matemática. Quedó especialmente fascinado por los Principia Mathematica de Russell y Whitehead y por el proyecto de Hilbert, y el tema que eligió para su tesis fue el problema de la completitud. La finalidad básica de esta investigación era determinar si el enfoque formal de Hilbert bastaba para generar todos los enunciados verdaderos de la matemática. Gödel recibió su doctorado en 1930 y un año más tarde publicó sus teoremas de incompletitud, que causaron un terremoto en el mundo de la matemática y en el de la filosofía.[227]
Los dos teoremas, enunciados en un lenguaje estrictamente matemático, sonaban bastante técnicos y no demasiado emocionantes:
Cualquier formalización consistente S en la que se puedan efectuar operaciones aritméticas elementales, es incompleta respecto de los enunciados de la aritmética elemental; esto es, hay enunciados cuya verdad o falsedad no se puede demostrar dentro de S.
Para cualquier formalización consistente S en la que se puedan efectuar operaciones aritméticas elementales, no es posible probar la consistencia de S dentro de S.
Aunque las palabras parecen inofensivas, las implicaciones para el proyecto de los formalistas llegaban lejos. Dicho de una forma algo simplificada, los teoremas de incompletitud demostraban que el plan formalista de Hilbert estaba esencialmente condenado al fracaso desde el principio. Gödel demostró que cualquier sistema formal lo bastante potente como para tener algún interés es, de forma inherente, o bien incompleto o bien inconsistente. Es decir, en el mejor de los casos, siempre habrá enunciados dentro del sistema formal cuya verdad o falsedad no podrán demostrarse. En el peor de los casos, el sistema generará contradicciones. Como, para cualquier enunciado T, T o no T tiene que ser verdadero, el hecho de que un sistema formal finito no pueda demostrar la verdad o falsedad de ciertos enunciados significa que siempre existirán enunciados verdaderos que no serán demostrables dentro del sistema. En otras palabras, Gödel demostró que ninguna formalización compuesta por un número finito de axiomas y reglas de inferencia puede abarcar nunca todas las verdades de la matemática. A lo más que se puede aspirar es a que las axiomatizaciones más aceptadas sean simplemente incompletas y no inconsistentes.
El propio Gödel creía en la existencia de una noción platónica independiente de verdad matemática. En un artículo publicado en 1947 escribía lo siguiente:
Pero, a pesar de estar tan apartados de la experiencia de los sentidos, sí tenemos una especie de percepción de los objetos de la teoría de conjuntos, como se puede deducir del hecho de que los axiomas nos parezcan forzosamente verdaderos. No veo motivo alguno para que debamos tener menos confianza en este tipo de percepción, es decir, en la intuición matemática, que en la percepción de los sentidos.[228]
Por una ironía del destino, cuando los formalistas ya se preparaban para cantar victoria, apareció Kurt Gödel (platónico declarado) y hundió la fiesta del proyecto formalista.
El famoso matemático John von Neumann (1903-1957), que en aquella época impartía en sus clases la obra de Hilbert, canceló el resto del curso para dedicar el tiempo que quedaba a los hallazgos de Gödel.
Como persona, Gödel era tan complejo como sus teoremas.[229] En 1940 huyó con su esposa Adele de la Austria nazi para ocupar un puesto en el Instituto de Estudios Avanzados de Princeton, New Jersey. Allí trabó una estrecha amistad con Albert Einstein, a quien solía acompañar en sus paseos. Cuando Gödel solicitó la nacionalización como ciudadano americano en 1948, fueron Einstein y el matemático y economista de la Universidad de Princeton Oskar Morgenstern (1902-1977) quienes le acompañaron a la oficina del Servicio de Inmigración y Naturalización (INS). Lo que aconteció en esta entrevista es de sobra conocido, pero revela hasta tal punto la personalidad de Gödel que relataré los hechos con todo detalle, exactamente como los registró Morgenstern el 13 de septiembre de 1971. Doy las gracias a Ms. Dorothy Morgenstern-Thomas, la viuda de Morgenstern, y al Instituto de Estudios Avanzados por haberme facilitado una copia del documento:
Corría el año 1946 cuando Gödel iba a convertirse en ciudadano americano. Me pidió que fuese su testigo; como segundo testigo propuso a Albert Einstein, que también aceptó de buen grado. Einstein y yo nos habíamos visto ocasionalmente, y ambos teníamos grandes expectativas sobre lo que podía ocurrir antes del proceso de naturalización e incluso durante dicho proceso.
Gödel, a quien veía con frecuencia en los meses previos al acontecimiento, empezó a prepararse de forma muy concienzuda. Gödel era una persona meticulosa, así que empezó a estudiar la historia de la colonización de Norteamérica por el ser humano. Eso le condujo al estudio de la historia de los indios americanos, sus diversas tribus, etc. Me llamó numerosas veces por teléfono para que le aconsejase libros, que leía con suma atención. Gradualmente surgieron muchas preguntas y dudas sobre la corrección de estas historias y las peculiares circunstancias que en ellas se revelaban. A partir de ahí y durante las semanas posteriores, Gödel pasó a estudiar historia americana, haciendo particular hincapié en temas de derecho constitucional. Esto le condujo a su vez al estudio de Princeton, y en especial quiso que yo le explicase dónde estaba la frontera entre el distrito y el municipio. Por supuesto, yo intenté hacerle comprender que esto era totalmente innecesario, pero fue en vano. El insistía en averiguar todos aquellos datos que quería saber, de modo que le proporcioné la información pertinente, incluso acerca de Princeton. Entonces quiso saber cómo se elegía el Consejo de Distrito, el Consejo Municipal, quién era el alcalde y cómo funcionaba el Consejo Municipal. Pensaba que era posible que le preguntasen acerca de esos asuntos y que, si demostraba que no conocía la ciudad en que vivía, causaría una mala impresión.
Intenté convencerlo de que esas preguntas nunca surgían; de que la mayor parte de las preguntas eran una simple formalidad y él las podría responder sin dificultad alguna; de que, como máximo, podían preguntarle qué sistema de gobierno teníamos en este país, cómo se llamaba la más alta instancia judicial o cosas así. De todos modos, él siguió con su estudio de la Constitución.
Y entonces sucedió algo interesante. Con cierta excitación me dijo que, al examinar la Constitución y para su disgusto, había hallado contradicciones internas y que podía demostrar cómo, de forma perfectamente legal, era posible que alguien se convirtiese en dictador e instaurase un régimen fascista que aquellos que redactaron la Constitución nunca pretendieron. Le dije que era muy improbable que algo así sucediese nunca, aun suponiendo que tuviese razón, cosa que yo, desde luego, dudaba. Pero él era una persona insistente, así que charlamos muchas veces de este asunto concreto. Yo intenté persuadirlo de que evitase referirse a estos temas ante el tribunal de Trenton, y también se lo comenté a Einstein que, horrorizado de que a Gödel se le hubiese ocurrido una idea así, también le señaló que no debía preocuparse por estas cuestiones ni referirse a ellas.
Pasaron varios meses y, finalmente, llegó la fecha del examen en Trenton. Aquel día pasé a recoger a Gödel en mi coche. Se sentó en el asiento posterior y luego pasamos a recoger a Einstein por su casa de Mercer Street, desde donde nos dirigimos a Trenton. Durante el viaje, Einstein se volvió levemente y preguntó «Y bien, Gödel, ¿estás realmente bien preparado para el examen?» Por supuesto, ese comentario alteró profundamente a Gödel, que era lo que Einstein pretendía; su semblante de preocupación de Gödel le pareció muy gracioso. Cuando llegamos a Trenton nos hicieron entrar en una gran sala y, aunque en general se interroga a los testigos por separado del candidato, se hizo una excepción en deferencia a Einstein y nos invitaron a los tres a sentarnos juntos, con Gödel en el centro. El examinador preguntó primero a Einstein y luego a mí si opinábamos que Gödel sería un buen ciudadano. Le aseguramos que sin duda alguna era así, que se trataba de una persona distinguida, etc. Entonces se volvió hacia Gödel y dijo:
—Bien, Mr. Gödel, ¿de dónde viene usted?
—¿Que de dónde vengo? De Austria.
—¿Qué forma de gobierno tenían en Austria?
—Era una república, pero debido a la constitución la forma cambió a una dictadura.
—¡Vaya! Qué mala fortuna. Eso no podría suceder en este país.
—Claro que sí. Y puedo demostrarlo.
Así que, de todas las posibles preguntas, el examinador tuvo que formular precisamente la más delicada. Einstein y yo nos mirábamos horrorizados durante esta conversación; el examinador fue lo bastante inteligente para tranquilizar enseguida a Gödel diciendo «Dios mío, no entremos en ese terreno» y, para nuestro alivio, interrumpió el examen en ese mismo momento. Cuando por fin salimos y ya nos dirigíamos hacia los ascensores, un hombre se acercó corriendo hacia nosotros con una hoja de papel y pidió un autógrafo a Einstein, que lo firmó con mucho gusto. Mientras bajábamos en el ascensor, le dije a Einstein «Debe de ser terrible que tantas personas le persigan a uno de este modo». Einstein respondió: «En realidad se trata simplemente de los últimos vestigios de canibalismo». Desconcertado, le pregunté: «¿En qué sentido?». El me dijo: «Verás, antes querían tu sangre, ahora quieren tu tinta».
Luego regresamos a Princeton y, al llegar a la esquina de Mercer Street, le pregunté a Einstein si quería ir al instituto o a casa, a lo que él contestó: «Llévame a casa, de todos modos mi trabajo ya no tiene valor alguno». Y prosiguió con una cita de una canción política americana (por desgracia no recuerdo sus palabras; es posible que la tenga en mis notas, y sin duda la reconocería si alguien sugiriese esa frase en particular). Así que fuimos hacia la casa de Einstein de nuevo. Einstein se volvió de nuevo hacia Gödel y le dijo:
—Bueno, Gödel, éste ha sido tu penúltimo examen.
—Cielos, ¿es que aún queda otro? —dijo él, de nuevo azorado.
Y Einstein le contestó:
—Gödel, el próximo examen será cuando entres andando en tu tumba.
—Pero Einstein, yo no entraré andando en mi tumba. —A lo que Einstein repuso:
—¡Ahí está la gracia precisamente, Gödel! —Y se fue. Luego llevé a Gödel a su casa. Todo el mundo sintió un gran alivio al resolver de una vez por todas este peliagudo asunto; ahora, Gödel tenía de nuevo la cabeza libre para cavilar sobre problemas de filosofía y lógica.[230]
Años después, Gödel sufriría episodios de enfermedad mental que acabaron en su rechazo a comer. Murió el 14 de enero de 1978 de desnutrición y agotamiento. Es un error muy extendido pensar que los teoremas de incompletitud de Gödel implican que algunas verdades no se conocerán jamás. Tampoco podemos deducir de ellos que la capacidad del entendimiento humano está limitada de algún modo. En realidad, los teoremas demuestran únicamente los puntos débiles y los inconvenientes de los sistemas formales. Por tanto, quizá resulte sorprendente saber que, a pesar de la colosal trascendencia de los teoremas en la filosofía de la matemática, su impacto sobre la eficacia de ésta como mecanismo de construcción de teorías ha sido, en realidad, bastante nimio. De hecho, durante las décadas que siguieron a la publicación de la demostración de Gödel, la matemática alcanzó algunos de sus más espectaculares éxitos en las teorías físicas del universo.
Lejos de quedar abandonada por falta de fiabilidad, la matemática y sus conclusiones lógicas se hicieron cada vez más esenciales para la comprensión del cosmos. Sin embargo, eso significaba que el misterio de la «inexplicable eficacia» de la matemática se hizo aún más insondable. Vamos a reflexionar: imaginemos lo que hubiera sucedido si el empeño logicista se hubiese visto coronado por el éxito. Esto habría implicado que la matemática deriva por completo de la lógica; literalmente, de las leyes del pensamiento. Pero ¿cómo es posible que una ciencia tan puramente deductiva se adapte de esa forma maravillosa a los fenómenos naturales? ¿Cuál es la relación entre la lógica formal (podríamos incluso decir la lógica formal humana) y el cosmos? Después de Hilbert y Gödel, la respuesta a estas preguntas seguía siendo borrosa. Ahora, todo lo que teníamos era un «juego» formal incompleto expresado en lenguaje matemático.[231] ¿Cómo pueden los modelos basados en un sistema tan «poco fiable» penetrar con profundidad en el enigma del universo y su funcionamiento? Antes de intentar dar respuesta a estas preguntas, voy a afinarlas un poco más por el método de examinar algunos casos prácticos que demuestran la sutileza de la eficacia de la matemática.
Continua en:

¿Es Dios un Matemático? Mario Livio 2009 Capitulo VIII ¿Eficacia inexplicable?

[204] Para una biografía completa véase MacHale 1985. <<
[205] Boole 1854. <<
[206] La conclusión de Boole fue que, en lo que respecta a la creencia en la existencia de Dios, los «débiles avances ilógicos y basados en la fe de un entendimiento de facultades y conocimientos limitados son más provechosos que los ambiciosos intentos de llegar a una certidumbre inalcanzable en el terreno de la religión natural». <<
[207] Frege 1879. Se trata de una de las obras esenciales en la historia de la lógica. <<
[208] Frege 1893, 1903. <<
[209] Para un comentario general sobre las ideas y el formalismo de Frege véanse, por ejemplo, Resnik 1980, Demopoulos y Clark 2005, Zalta 2005, 2007 y Boolos 1985. Para un excelente comentario general sobre la lógica matemática véase DeLong 1970. <<
[210] Frege 1884. <<
[211] La paradoja de Russell y sus implicaciones y posibles soluciones se tratan, por ejemplo, en Boolos 1999, Clark 2002, Sainsburg 1988 e Irvine 2003. <<
[212] Whitehead y Russell 1910. Véase Russell 1919 para una descripción sencilla pero esclarecedora sobre el contenido de los Principia.<<
[213] Para conocer más acerca de la interacción entre las ideas de Russell y de Frege véase Beaney 2003. Para más información sobre el logicismo de Russell véase Shapiro 2000 y Godwyn e Irvine 2003. <<
[214] Urquhart 2003 contiene un excelente comentario al respecto. <<
[215] La teoría de tipos ha perdido predicamento entre la mayoría de los matemáticos. Sin embargo, una construcción similar ha hallado nuevas aplicaciones en programación de ordenadores. Véase por ejemplo Mitchell 1990. <<
[216] Una descripción de sus contribuciones se puede ver en Ewald 1996. <<
[217] Véase Van Heijemoort 1967 para traducciones inglesas de los documentos originales de Zermelo, Fraenkel y el lógico Thoralf Skolem. Devlin 1993 contiene una relativamente sencilla introducción a los conjuntos y a los axiomas de Zermelo-Fraenkel. <<
[218] En Moore 1982 se puede hallar un detallado comentario acerca del axioma. <<
[219] Cantor ideó un método para comparar la cardinalidad de conjuntos infinitos. En concreto, demostró que la cardinalidad del conjunto de los números reales es mayor que la del conjunto de los números enteros. A continuación formuló la hipótesis del continuo, que afirmaba que no hay ningún conjunto cuya cardinalidad se halle estrictamente entre la de los números enteros y la de los números reales. Cuando David Hilbert planteó sus famosos problemas de la matemática en 1900, el primero fue la cuestión de la verdad o falsedad de la hipótesis del continuo. Woodin 2001a,b contiene un comentario relativamente reciente de este problema. <<
[220] Describió su trabajo en Cohen 1966. <<
[221] Una buena descripción de los planes de Hilbert se puede hallar en Seig 1988. En Shapiro 2000 se presenta un repaso excelente y actualizado de la filosofía de la matemática y un resumen de las tensiones entre logicismo, formalismo e intuicionismo. <<
[222] Hilbert pronunció esta conferencia en Leipzig en septiembre de 1922. El texto se encuentra en Ewald 1996. <<
[223] Véase Detlefsen 2005 para un excelente comentario sobre formalismo. <<
[224] Monk 1990 presenta una magnífica biografía. <<
[225] En Waismann 1979. <<
[226] Véase Goldstein 2005 para una biografía reciente. La biografía estándar ha sido Dawson 1997. <<
[227] Hofstadter 1979, Nogel y Newman 1959 y Franzen 2005 son textos excelentes acerca de los teoremas de Gödel, su significado y su relación con otras ramas del conocimiento. <<
[228] Gödel 1947. <<
[229] Wang 1996 contiene una descripción exhaustiva de los puntos de vista filosóficos de Gódel y de cómo relacionaba estas ideas con las bases de la matemática. <<
[230] Morgenstem 1971. <<
[231] Se trata claramente de una simplificación excesiva, sólo admisible en un texto divulgativo. De hecho, aún en la actualidad prosiguen algunos intentos serios de dar vida al logicismo. Estos suelen asumir que muchas de las verdades matemáticas se pueden conocer a priori. Véanse, por ejemplo, Wright 1997, Tennant 1997. <<

No hay comentarios: